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FIXED PARAMETERS SUPPORT VECTOR REGRESSION FOR 

OUTLIER DETECTION 

 

 

Abstract: The support vector machine (SVM) is currently a very popular 

technique of outlier detection as it is a robust model and does not require the data to 

be of full rank. With a view to evaluate the approximate relationship among the 
variables, there is necessity to detect outliers that are commonly present in most of 

natural phenomena before beginning to construct the model. Both of the standard 

support vector machine(SVM) for regression and modified SV Regression 

(  SVR) techniques are effective for outlier detection in case of non-linear 

functions with multi-dimensional inputs; nevertheless, these methods still suffer from a 

few issues, such as the setting of free parameters and the cost of time. In this paper, we 
suggest a practical technique for outlier detection by utilising fixed parameters to 

build SVR model, which reduces computational costs. We apply this technique to real 

data, as well as simulation data in order to evaluate its efficiency. 
Keywords: outliers; robustness; sparseness; learning theory; support vector 

machine. 
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1. Introduction 
The support vector machine (SVM) is currently attracting the attention of 

many researchers and it has been successfully applied to regression problems (SVR) in 

addition to classification problems (SVC) (Yang et al., 2004). It is a universal 
technique to solve problems which are nonlinear, and high-dimensional (full rank or 

less than full rank) (Williams, 2011). The idea behind the use of the kernel trick in the 

support vector machine (SVM) is to approximate the non-linear relationship among 

variables (input space)to a linear form in the feature space (high-dimensional) (Lahiri 
and Ghanta, 2009). Despite the fact that SVM is a non-parametric method and depends 

on part of training data, it is still influenced by outliers, which is common issue in real 

life applications because outliers can be chosen as a part of the support vectors 
(Chuang et al., 2002). 

The majority of data in real applications are vulnerable to noise and outliers 

that lead to misleading conclusions. According to Hawkins (1980), an outlier can be 
defined as ‘an observation which deviates so much from other observations as to 

arouse suspicions that it was generated by a different mechanism’. Outliers can arise 

for a number of reasons, such as inherent variability, execution error and measurement 

error. If the samples contain noise or outliers, the learning technique may try to fit in 
the undesirable points and this can leads to a skewed approximation function. This is 

so-called over-fitting problem (Suykens et al., 2002) and can affect the testing error 

badly; in other words, over-fitting often results in a loss of generalisation ability. 
Since the presence of outliers is an abnormal phenomenon, they should be 

treated (giving down weight) or removed from the complete data set before 

constructing the approximate model. Because, the target machine (SVR) mostly deals 

with nonlinear and high-dimensional inputs, conventional methods, such as linear 
regression, may fail to attain the required efficiency. Moreover, the detection of 

multiple outliers based on the standard diagnostic methods can be limited due to 

‘masking’ and ‘swamping’ problems. ‘Masking’ describes a situation where outliers 
are incorrectly interpreted as normal points, while ‘swamping’ is when normal points 

are incorrectly interpreted as outliers. 

Recently, SVM has been successfully applied to detect outliers (Cherkassky 
and Mulier, 2007). For example, support vector classification was used for outlier 

detection, as mentioned in Jordaan and Smits (2004). The robustness of SVM with 

respect to outliers, and the fact that one or more outliers are a portion of the support 

vectors, makes the technique potentially appropriate for outlier detection (Jordaan and 
Smits, 2004). Furthermore, SVM has a considerable advantage over the traditional 

approaches because it is easy to control its free parameters. Anyway, the robustness of 

support vector machine is not enough to detect outliers easily, as it includes just one 
angle of the solution triangle (the type of transformation, sparseness and robustness). 
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The rest of this paper is organised as follows: in Section 2, a brief description 
of the Support vector regression and its use for outlier detection is given. Section 3 

describes the proposed fixed parameters SVR for outlier detection. In Section 4, the 

proposed method is evaluated on three real data sets. In section 5, the proposed method 
is tested on rank-deficient data set (simulation study). Finally, concluding remarks are 

given in Section 6. 

 

2. SVM regression for outlier detection 
In order to understand the SVR methodology, we consider the following 

regression function of the training data set, :},|),(),...,,{( 11 RyRxyxyx p

ll     

 bxwwxf  )(,),(                                                     (1) 

where  is the space of the independent variables, )(x is a function, transforms the 

nonlinear relationship in the original space to be  a linear form in a high-dimensional 

feature space, while w and b are parameters of the weight and the bias of the regression 

function respectively. Jointly, these parameters are estimated by minimising the next ε 
-tube loss function (Vapnik, 1995): 
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The given training data set ),( ii yx is to minimise the next convex optimisation 

problem that is reported by Vapnik (1995): 
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where i  and 
*

i are the slack variables that give the lower and upper errors, is the 

parameter of the - tube loss function and the parameter C represents a trade-off 

between two directions, the model complexity (flatness) and the quantity of deviations 

greater than threshold (ε) that are tolerated. 
The dual optimisation problem of (3) is to maximise the following convex 

quadratic problem (Vapnik, 1995): 



 
 
 
 
 
Sohel Rana, Waleed Dhhan and Habshah Midi 

______________________________________________________________________ 

270 

 

DOI: 10.24818/18423264/52.2.18.16 

 
 

],0[,;0)(

)4()()(),())((
2

1

*

1

*

1,

*

1

*

1,

**

Ctosubject

yxxkmaximize

ii

l

i

ii

l

ji

ii

l

i

iii

l

ji

jijjii







 



 





where )(),(),( jiji xxxxk  is the transformation function (kernel function) 

(Vapnik, 2000). The final function of SVR can be symbolised as follows: 

bxxkwxf
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* ).()(),(                                                  (5) 

Jordaan and Smits (2004) researched the use of SVR in outlier detection based 

on its robustness. Later, Nishiguchi et al., (2010) introduced the use of μ−ε−SVR for 
detection of outliers in case of nonlinear problems with high-dimensional inputs. 

Although these techniques use the advantages of SVR, it is not easy for non-expert 

users to set them into practical use due to the difficulty of the tuning of the parameters, 
as well as the high calculation costs that might result in masking and swamping 

problems. 

The following problems arise when these methods are applied to real life 

applications: first, the method of Jordaan and Smits (2004) requires high computational 
costs because detection of an outlier needs several iterations of the optimisation 

computation, while the other method (Nishiguchi et al., 2010) is only suitable when 

there are only a few outlier points in the data because the possibility of this technique 
for detecting and removing outliers is just one outlier point per iteration. Therefore, the 

computational cost becomes too high when the number of outliers is higher. Second, it 

mainly depends on trial and error for accurate detection, as it is not clear how users can 
define the outlier threshold value, which can make this approach difficult for them. 

Third, according to the machine learning theory, the SVM algorithm has a unique trait 

that determines its structure (Chuang et al., 2002), which means there is the possibility 

of the emergence of ‘masking’ and ‘swamping’ problems when it uses different values 
for the ε parameter. 

In this paper, our objective is to overcome these drawbacks; we therefore 

proposed using the SV regression for outlier detection taking into consideration the 
three angles: the type of transformation, sparseness and robustness. 

 

3. Proposed approach for outlier detection 
In order to promote the performance of the standard SVR to detect outliers, we suggest 
a practical procedure (fixed parameters ɛ-tube SV Regression) that takes into 

consideration all three angles(the type of transformation, sparseness and 

robustness).These three angles produce the so-called triangle of solution; therefore, any 
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approach depends only on the question of which is the best. The efficiency of this 
technique lies in the fact that it requires less time than conventional methods and can 

detect abnormal points (outliers) without the need to remove them to allow for 

handling (for instance, minimizes their weights by following robust methods). 
In the fixed parameters ɛ-tube SV Regression, we use the advantage of non-

sparseness of the ɛ-insensitive loss function (the need of all samples).As shown in 

Ceperic, Gielen and Baric(2014) and Guo, Zhang and Zhang (2010), if the value of 

threshold ε is very small, then the SV regression model depends on most of the training 
data, thereby making the resulting solution non-sparse. When the ɛ parameter greater 

than zero, it is likely that some of the outliers are not considered as support vectors 

(fall inside the ɛ-zone), implying the need for further iterations for detecting outliers 
correctly. Practically, detection of outliers can be done by using the non-sparse ε -tube 

loss function(the value of ε parameter equal to zero). The non-sparse ε -tube loss 

function is defined as follows: 
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According to that, we can rewrite the convex optimisation problem in (3) as follows: 
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Consequently, the dual optimisation problem (4) could be rewritten by the following 
convex quadratic problem: 
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Thus, the prediction SV regression function and the weight vector are represented as 

follows: 

                                     bxxkwxf
l

i

iii 
1

* ).()(),(                                  (14) 





l

i

iii xw
1

* )()(   



 
 
 
 
 
Sohel Rana, Waleed Dhhan and Habshah Midi 

______________________________________________________________________ 

272 

 

DOI: 10.24818/18423264/52.2.18.16 

 
 

As shown in Rojo-Álvarez et al. (2003), controlling the parameters of SVMs 
(ɛ, C and the parameter of kernel) provides insensitivity to outliers or it permits the 

reduction of the influence of outliers in the optimal solution. Üstün et al. (2005), 

pointed to that the robustness of the SVR model (14) depends fundamentally on the 

selection of the C parameter, since the highest i and 
*

i values are, by definition of the 

Lagrange, equal to the value of C parameter. More accurately, a very high C values 

results in support vectors with a high dispersion among i and 
*

i values (14) that 

produce significant weights. In another words, the highest Lagrange multipliers 

( i and 
*

i ) belong to the abnormal sample in the training data set that is deemed an 

outlier (Jordaan and Smits, 2004).Thereby, the weight vector (14) is increased 

whenever the value of C parameter is increased, and the presence of outliers. This 

provides the control on the impact of outliers by controlling the value of the parameter 
C and the advantages of Kernel function. 

Another aspect that should be taken into account is the characteristics of 

Kernel functions. Williams (2011) pointed to that the algorithm of the SVM is 

sensitive to the setting option (the type of transformation) and, therefore, users should 
understand the nature of transformation function (how it works). As the exponential 

radial basis function (RBF) is the widely used, this paper will focus on a data set for 

which the RBF kernel is suitable. 
 

3.1. Exponential Radial Basis Function (RBF) 

The most common type of kernel is the Gaussian Radial Basis, which could 
be represented by the following equation: 
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A quick look at the equation (15), we note that output between brackets always a 

negative value, meaning that the RBF kernel is decreasing exponentially with a start 

point equal to the upper bound (equal to one). By way of explanation, let 0x be an 

outlier, then, the RBF kernel value for pairs ( 0x , 0x ) will be equal to the upper bound 

as demonstrated below: 

                        K( 0x , 0x ) = exp [0] = 1                                                                    (16) 

                                 K( eestdatax , 0x ) < 1 

Hence, it can be concluded that the outlier point affects its line more than the influence 

on the other points and we expect the estimated value (14) for the outlier point to be 

greatest value among the other estimated values. However, the differences would be 
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not clear when the value of the parameter C is moderate, implying that we will get a 
low error. To avoid this case, there are two options: first, we can use very small 

weights (C = 1/100000) to get extremely low estimates, meaning that we will get very 

high error corresponding to the abnormal point in the data and it will be considered as 
an outlier. Second, using very high weights (C = 100000) produces a very high 

estimated value corresponding to the unusual sample. Thereby, the use of the highest 

errors will be failed to detect the outliers because the estimated values are close to its 

real values. As a result, we would use the estimated values to detect the outliers. 
 According to the graphics, we can easily observe the points that are far from the 

majority of the data, however, there are still some difficulties facing the non-expert 

users. Thus, the criterion of the cut-off point should be used. In order to detect the 
outlier points correctly, we can utilise robust parameter location (the median) to 

separate the outliers and the majority of the data. In any clean data such as 

|| iZ variable, the maximum value of samples is as follows: 

                             2||2||  ii ZMedZMax                                                          (17) 

In order to separate the outlier points and the clean points, the equation (17) could be 

used. However, to use this equation, one needs to estimate the value of  . Two things 

should be taken in account to estimate the value of   parameter, the dispersion of the 

observations of the variable || iZ , and the estimated value of the penalising parameter 

(C parameter).In this case, the standard deviation of the robust location parameter (the 

median) of the variable || iZ can be used as a predicted value for the parameter   

when the parameter C is extremely small and || iZ are the training errors. As a result of 

penalising the training error by the parameter we expect high errors (Zong, Liu and 

Dou, 2006).On the other hand, when the value of the parameter C is very high and 

|| iZ are the predicted values, we can also utilize the standard deviation of the robust 

location parameter of the variable || iZ  as a predicted value for the penalizing 

parameter according to the next equation: 

                                         SST=SSE+SSR                                                                  (18) 

The cut-off point in the cases mentioned above could be explained as follows: 

                                 
nmedsd

MedsdZMedPC i

2/)(

)(.2||2.

2


                                               (19) 

As this approach involves detecting all the outlier points by applying it ones, 

the computational cost would be less than those of the conventional techniques. 
Additionally, it is suitable for non-expert users because it introduces fixed set of 

parameters. In the next two sections, we will utilise the RBF kernel function (15) with 
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(h =1, ε = 0, C = 0.0001) as a set of parameters, in the case of using estimation errors 
to detect outliers, and (h=1, ε =0, C =10000), in the case of using estimated values. 

 

4. Results for real data sets  
In order to prove the performance of the proposed approach for outlier 

detection, we will first discuss the results of real data applications which contains 

single and multiple outliers. These data sets are the ‘wholemeal flour data’, the 

‘international Belgian phone calls data’ and the ‘Hawkins, Bradu and Kass’ data. 
These real data are chosen because, in numerous previous studies, there is a general 

consensus on which data points are the true outliers (Maronna et al., 2006;  Rousseeuw 

and Leroy, 1987). 
 

4.1 The copper content data 

The first example with two variables is the 24 observations of copper content 
in wholemeal flour that is sorted in ascending order. The last observation was 

considered an outlier, as mentioned in most previous studies (Maronna et al., 2006). 

Figures 1 and2 show the results of applying the fixed parameters SVR graphically to 

the data set based on estimation errors and estimated values respectively. Table 1, 
explains the result of applied the proposed method for outlier detection digitally. It is 

clear that the outlier points are detected correctly. 

 
 

 
Figure 1. Identification of outliers 

based on estimated errors. 

 

 
Figure 2. Identification of outliers 

based on estimated values 
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Table 1: The results of applying the proposed method on copper content data set. 

Index 
Err. 

(3.34) 

Est.  

(9.48) 
Index 

Err.  

(3.34) 

Est.  

(9.48) 
SL. 

Err.  

(3.34) 

Est.  

(9.48) 

 
1 1.1848 2.2000 9 0.3547 3.0299 17 0.2148 3.5999 

2 1.1847 2.2001 10 0.3547 3.0297 18 0.3148 3.6996 

3 0.9847 2.3999 11 0.2847 3.1002 19 0.3148 3.7000 

4 0.9847 2.3998 12 0.0148 3.3699 20 0.3148 3.7000 

5 0.8847 2.4994 13 0.0149 3.4001 21 0.3148 3.7003 

6 0.6847 2.7001 14 0.0148 3.3998 22 0.3848 3.7700 

7 0.5847 2.7997 15 0.0148 3.4000 23 1.8948 5.2804 

8 0.4847 2.8997 16 0.1148 3.5004 24 25.564 28.949 

 

 

4.2 Belgian phone data 

In the Belgian Statistical Survey, a data set was found containing the total 

number of international phone calls made between the years 1950 and 1973, which 

contains heavily contaminated data (Leroy and Rousseeuw, 1987).As shown in Figures 
3, 4 and Table 2, the proposed approach is effective to determine outliers correctly by 

using estimation errors and estimated values respectively. 

 
Figure 3. Identification of outliers based 

on estimation errors. 

 
Figure 4. Identification of outliers 

based on estimated values. 
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Table 2: The results of applying the proposed method on phone calls data set. 
 

Index 
Err. 

(51.7) 

Est. 

(64.5) 
Index 

Err. 

(51.7) 

Est. 

(64.5) 
Index 

Err. 

(51.7) 

Est. 

(64.5) 

1 11.099 4.3998 9 4.8998 10.600 17 126.49 141.99 

2 10.799 4.7003 10 3.4998 12.000 18 143.49 159.00 

3 10.799 4.6996 11 1.9998 13.499 19 166.49 181.99 

4 9.5998 5.8999 12 0.5999 14.900 20 196.49 211.99 

5 8.8998 6.5998 13 0.5999 16.099 21 27.499 42.999 

6 8.1998 7.3002 
 

 

 
 

14 5.6998 21.199 22 8.4998 24.000 

7 7.3998 8.0997 15 103.49 118.99 23 11.499 26.999 

8 6.6998 8.7999 16 108.49 124.00 24 13.499 29.000 

 

4.3 Hawkins, Bradu and Kass data (HBK)  

The last example that has multiple variables is the HBK data set, an artificially 
constructed data with 10 bad leverage points (the first 10 observations) which affect 

the regression line and lie far away from it. While the observations11–14 are 

considered good leverage points that lie near the regression line (Hawkins, 1980).As 
seen in Figures5 and 6,the proposed method succeeded in detecting outlier points of 

the data set correctly, whether using estimation errors or estimated values. Table 3 

demonstrates the digital results the proposed approach for outlier detection based both 

of the estimated errors and values.  

 
Figure 5. Identification of outliers    

based on estimation errors. 

 
Figure 6. Identification of outliers based   

on estimated values. 
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Table 3: The results of applying the proposed method on HBK data set. 
 

Index 
Err. 

(2.14) 

Est. 

(2.15) 
Index 

Err. 

(2.14) 

Est. 

(2.15) 
Index 

Err. 

(2.14) 

Est. 

(2.15) 

1 9.5997 9.6998 26 0.8998 0.8002 51 0.5998 0.7003 

2 9.9997 10.099 27 0.7999 0.6999 52 0.5997 0.5001 

3 10.199 10.299 28 0.1999 0.2999 53 0.5999 0.7001 

4 9.3998 9.4996 29 0.1998 0.2998 54 0.6000 0.6998 

5 9.8997 10.000 30 0.3998 0.2995 55 0.0996 0.0003 

6 9.8997 9.9999 31 0.0999 0.0002 56 0.0009 0.1002 

7 10.699 10.800 32 0.4997 0.4003 57 0.5998 0.6999 

8 10.199 10.299 33 0.6999 0.6000 58 0.1999 0.1000 

9 9.4997 9.5997 34 0.7999 0.7001 59 0.3998 0.2996 

10 9.7998 9.8999 35 0.2000 0.2996 60 0.9998 0.9000 

11 0.2998 0.1998 36 1.0998 0.9997 61 0.3997 0.3000 

12 0.4998 0.3999 37 0.6998 0.6000 62 0.4999 0.5995 

13 0.5999 0.6997 38 0.7997 0.9003 63 0.3999 0.2999 

14 0.0003 0.1000 39 0.7998 0.7000 64 0.5999 0. 4995 

15 0.5000 0.3996 40 0.5996 0.4997 65 0.5000 0.5997 

16 0.4999 0.6001 41 0.1999 0.1002 66 0.9996 0.9004 

17 0.2997 0.2002 42 0.7999 0.7003 67 0.7998 0. 6998 

18 0.0999 0.0002 43 0.4999 0.6001 68 0.4999 0.5996 

19 0.0009 0.1004 44 0.7998 0.7000 69 0.0998 0.2004 

20 0.3000 0.4000 45 0.5999 0.4999 70 0.6001 0.6998 

21 0.7999 0.9004 46 0.4998 0.3996 71 0.1000 0.1999 

22 0.2000 0.2998 47 0.9998 0.9003 72 0.2996 0.1999 

23 0.8999 0.8000 48 0.0003 0.0998 73 0.3001 0.4004 

24 0.6001 0.6998 49 0.7999 0.8998 74 0.9997 0.8995 

25 0.4000 0.3003 50 0.4998 0.3997 75 0.0999 0.2001 

 

5. Results for the simulation studies 
We consider two types of simulation studies, where the first simulation deals 

with rank deficient data and the second simulation checks the reliability of the 
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proposed method by detecting the correct number of outliers. The simulation studies 
were done by R software.  

 

5.1 Simulation I 
In order to elucidate the efficiency of the proposed approach for data that are 

rank deficient, we can examine the following example when the sample sizes less than 

the explanatory variables (n = 25 and p = 30): 

                                rXy                                                                       (20) 

where ijij rbx and, are sampled randomly according to the standard normal 

distribution (Friedman et al., 2010). Five points (1–5) were replaced by arbitrary large 

numbers equal to 35 to be five artificially bad leverage points (outlying in X and Y 

directions). In Figures 7, 8 and Table 4, we can see that the proposed method clearly 
succeeded to detect outliers for rank-deficient data. 

 

5.2 Simulation II 

In this section, we report a simulation study to assess the reliability of the 
proposed fixed parameters SVR method and compare it with the robust Mahalanobis 

Distance (RMD) technique in terms of the correct identification, masking and 

swamping problems. The evaluation of these techniques is based on the rate of correct 
detection of bad observations and the rate of masking and swamping effects. A good 

approach is the one that has higher percentage of correct detection of bad leverage 

points with smaller rates of masking and swamping. Here, experiments are designed  

 
Figure 7. Identification of outliers 

based on estimation errors 

 
Figure 8. Identification of outliers based 

on estimated values. 
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Table 4: The results of applying the proposed method of rank deficient data set. 

 

Index 
Err 

(12.1) 

Est 

(11.28) 
Index 

Err 

(12.1) 

Est 

(11.28) 
Index 

Err 

(12.1) 

Est 

(11.28) 

1 24.727 26.919 10 7.2161 5.0243 19 4.1741 1.9824 

2 22.310 24.503 11 2.1656 4.3576 20 1.8869 0.3049 

3 20.482 22.674 12 1.4271 3.6191 21 8.2437 6.0517 

4 13.496 15.688 13 4.2231 2.0312 22 2.1174 0.0747 

5 17.198 19.390 14 0.6486 1.5434 23 1.7471 0.4447 

6 7.2770 5.0851 15 5.4824 7.6745 24 3.9175 1.7253 

7 1.1063 3.2982 16 4.6570 6.8492 25 0.1855 2.3777 

8 5.6248 3.4329 17 0.0000 2.1925 - - - 

9 7.7410 9.9331 18 1.1761 1.0157 - - - 

 

for two sets of explanatory variables based on linear and nonlinear models. The 

first set is based on the nonlinear model in (21) with two predictors (p = 2), 

while the second set is based on the general linear regression model in (20) with 

three predictors (p = 2) 

                                irxxy  2

2

2

1                                                          (21) 

The explanatory variables are generated randomly from a uniform distribution with 

mean zero and variance one, while the additive residuals ir are generated from standard 

normal distribution. In each experiment, different size of samples (n = 20, 40, 100 and 

150) and different percentages of contamination ( = 0.05, 0.10, 0.15 and 0.20) are 

used. The bad leverage observations are generated based on the position j of the first 

n observations for both x and y variables. In order to generate these points, the first 

observations in each explanatory variable is kept fixed at10 + j, which appear later in 

the dependent variable based on the used model automatically. The comparison results 
based on1000 replications of this simulation study are summarized in Tables (5) and 

(6). These tables demonstrate the percentage of correct detection of bad leverage 

points, and the rates of masking and swamping for all possible combinations of p, n 

and  . 

It is interesting to note the results from Tables (5) and (6) that the proposed 
FP-SVR method consistently displays higher rate of detection of BLP with almost 

negligible swamping and masking rates for all combinations of values of p, n and   . 
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On the other hand, the RMD presents higher rate of detection of BLP but its swamping 
effect is very high compared with the proposed method which indicates the superiority 

of the proposed method. The results of the study show that the proposed FP-SVR 

technique performs best overall of the RMD method. 
 

Table 5: Percentage of correct identification of BLP, masking and swamping for 

simulation data with two predictors 
 

Cont. 
level 

n 
%  Correct detection %  Masking  %  Swamping 

RMD FP-SVR RMD FP-SVR RMD FP-SVR 

5% 

20 100 100 0 0 30 0.23 

40 100 100 0 0 10.6 0.50 

100 100 100 0 0 11.7 0.43 

150 93.3 93.3 6.7 6.7 1.25 0.29 

10% 

20 100 100 0 0 25 0.01 

40 100 100 0 0 5.9 0.08 

100 100 100 0 0 10.4 0.05 

150 100 100 0 0 0.71 0.03 

15% 

20 100 100 0 0 20 0.01 

40 100 100 0 0 4.6 0.01 

100 100 100 0 0 4.4 0 

150 97.8 97.8 2.2 2.2 0.89 0 

20% 

20 100 100 0 0 5 0 

40 100 100 0 0 6.2 0 

100 100 100 0 0 1.1 0 

150 100 100 0 0 0.7 0 

 

Table 6: Percentage of correct identification of BLP, masking and swamping for 

simulation data with three predictors 
 

Cont. 

level 
n 

%  Correct detection %  Masking  %  Swamping 

RMD FP-SVR RMD FP-SVR RMD FP-SVR 

5% 

20 100 100 0 0 30 0 

40 100 100 0 0 9.5 0 

100 100 100 0 0 5.6 0.01 

150 94.3 94.3 6.7 6.7 0.8 0 

10% 

20 100 100 0 0 5 0 

40 100 100 0 0 4.4 0 

100 100 100 0 0 2.3 0 

150 100 100 0 0 0.7 0 
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 Table 6 continue 

15% 

20 100 100 0 0 10 0 

40 100 100 0 0 2.8 0 

100 100 100 0 0 0.7 0 

150 97.7 97.7 2.22 2.22 0.8 0 

20% 

20 100 100 0 0 0 0 

40 100 100 0 0 3 0 

100 100 100 0 0 0.1 0 

150 100 100 0 0 0.7 0 
 

 

6. Conclusion 
In this study, we proposed a practical approach to detecting outliers in the case 

of full rank and rank-deficient (less than full rank) by using fixed parameters of the SV 

regression. This technique has advantages over the previous methods as it diminishes 
computational cost and it succeeded in introducing a fixed set of the free parameters, 

making it appropriate for non-expert users. Moreover, outliers could be detected 

without the need to remove and replace them. The efficiency of this approach was 

tested on real and simulated data sets. 
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